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ABSTRACT
Understanding neuro-perceptual mechanism of vocal emotion
perception continues to be an important research direction
not only in advancing scientific knowledge but also in in-
spiring more robust affective computing technologies. The
large variabilities in the manifested fMRI signals among sub-
jects has been shown to be due to the effect of individual
difference, i.e., inter-subject variability. However, relatively
few works have developed modeling techniques in task of
automatic neuro-perceptual decoding to handle such idiosyn-
crasies. In our work, we propose a novel computation method
of deep voting fusion neural network architecture by learn-
ing an adjusted weight matrix applied at the fusion layer. The
framework achieves an unweighted average recall of 53.10%
in a four-class vocal emotion states decoding task, i.e., a rel-
ative improvement of 8.9% over a two-stage SVM decision-
level fusion. Our framework demonstrates its effectiveness in
handling individual differences. Further analysis is conducted
to study the properties of the learned adjusted weight matrix
as a function of emotion classification accuracy.

Index Terms— individual difference, fMRI, vocal emo-
tion perception, deep voting fusion neural net

1. INTRODUCTION

Investigating human brain’s activities using BOLD (blood-
oxygen-level-dependent) signal captured from functional
magnet resonance imaging (fMRI) has brought a vast amount
of valuable insights in understanding the underlying com-
plex neural mechanism of emotion perception (e.g., [1, 2]).
Variabilities existed in the BOLD signals consist of multiple
complex factors, mostly due to the diversity in humans that
makes everyone differs from one another. In fact, studying of
neural mechanism has recently emphasized the importance
of individual differences. For example, several past research
works have demonstrated that by simply averaging neural re-
sponses of subjects would inadvertently eliminate important
information about brain structures and functions [3, 4, 5];
Canli et al. also indicate that large variabilities between sub-
jects may result in unwanted low significant values leading
to unfavorable false interpretations [6]. Furthermore, in an

extended study, Hamann et al. have shown that the identifi-
cation of brain regions responsible for emotion processing is
largely affected by individual differences [7].

Within the domain the neuro-scientific studies, the method
in addressing individual differences is often to perform cor-
relation study at the individual level, e.g., Dubois et al. focus
on validating scientific hypothesis and the reliability of the
collected fMRI signal by generating correlation plots at the
individual level [8]; Parasuraman et al. use similar methods
to observe how individual variation influences cognitive pro-
cesses of working memory and decision-making [9]. These
methods reveal the importance of considering individual dif-
ference. However, in the context of developing algorithms
for automatic decoding humans emotion perception from
fMRI data (e.g., [10, 11, 12]), few modeling techniques have
integrated this component beyond conventional method of
decision-level fusion.

In this work, we propose a novel deep voting fusion neu-
ral network architecture that directly integrates individual’s
fMRI neural representations for task of automatic decoding of
vocal emotion perception. Our proposed deep voting fusion
neural network introduces the use of fusion layer and learns
an adjusted weighted matrix, then the entire emotion decod-
ing network is fine-tuned after re-initializing the fusion layer
with the adjusted weights. We conduct our experiment in a
database consists of 18 subjects, where each individual is pre-
sented with 251 emotional utterances stimuli gathered from
the USC IEMOCAP database [13]. Our framework achieves
an unweighed average recall (UAR) of 53.10% in a four-class
emotion decoding task, which improves 8.9% relative over a
popular two-stage decision-level fusion technique. The rest of
paper is organized as follows: section 2 describes about emo-
tion stimuli design and collection and our proposed frame-
work, section 3 includes experimental setups and results, and
section 4 concludes with future work.

2. RESEARCH METHODOLOGY

2.1. Vocal Emotion Stimuli Design and Collection
Our vocal emotion stimuli dataset is designed from the USC
IEMOCAP database [13]. The same set of stimuli was also
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Fig. 1. A schematic of our proposed deep voting fusion neural work in performing automatic 4-class vocal emotion decoding.

used in the study of brain connectivity of vocal emotion [14]
and joint modeling between the BOLD signal time series and
prosodic features [15]. This dataset consists of six different
stimuli, and each lasts for 5 minutes when presented to the
subjects. These stimuli are gathered from a single speaker
in the USC IEMOCAP database. There is a total of 251 ut-
terances from the database being used as the vocal emotion
stimuli presented in this work.

2.1.1. Emotion Classes
Since the original labels offered by the USC IEMOCAP
database on these 251 utterance are distributed unevenly
across 8 different emotion classes, where some of the classes
include only few data samples. Thus, we merge the 8 classes
into 4 distinctive emotion classes according to the valence-
activation representation of categorical emotion [16]. Table
1 lists the original and the merged emotion label classes
with their associated numbers of samples. In the following
classification experiments, we use these four emotion classes.

2.1.2. fMRI Data Collection and Preprocessing
All of the participated subjects are aged between 20-35 years
old with college-level education (18 subjects). Each partici-
pant listens to three 5-minute long continuous vocal emotion
stimuli and has a 5-minute break in-between. MRI scanning
is performed on a 3T scanner (Prisma, Siemens, Germany).
Anatomical images with spatial resolution of 1 ∗ 1 ∗ 1mm3

(T1-weighted MPRAGE sequence) are acquired using an EPI
sequence (TR/TE= 3000/30ms, voxel size =3 ∗ 3 ∗ 3mm3,
40 slices, and 100 repetitions). We perform all necessary pre-
processing steps using the DPARSF toolbox [17] and interpo-

Table 1. Summary of the original and the merged labels of
the 251 utterances used in this work

Original Number Merged Classes Number

Sad 33 Class 1 33
Happy 12

Class 2 79Excited 64
Surprise 3
Neutral 69 Class 3 69
Angry 19

Class 4 70Distress 1
Frustrated 50

late the MRI images to 1 second time interval.

2.2. fMRI-CNN Representation
Prior work on the same dataset has shown that the temporal
lobe possesses the most vocal emotionally-relevant informa-
tion [10]. In this work, we use the same exact structure in
deriving convolutional neural network (CNN) representation
for each subject at their associated temporal lobe region. A
brief description of the CNN structure is given below.

There are a total of 11 hidden layers in the training of
fMRI-CNN representation: including 4 convolutional layers,
3 pooling layers, 3 fully connected layers, and 1 softmax
layer. Hyper-parameter settings are: activation function of
Relu, weight decay: 0.000001, momentum: 0.9, learning
rate: 0.0001, epoch 20 times. The training accuracy achieves
around 88% to 95%. Finally, we extract the output of tenth
hidden layer (500 nodes) as the feature for each 3-D scanning
image. Since there are multiple images per utterance, max
pooling over temporal dimension is used to generate the final
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representation of each subject at an emotional utterance level.

2.3. Deep Voting Fusion Architecture
Our proposed framework is a deep voting fusion network
architecture that learns to fuse multiple subjects neural re-
sponses for automatic emotion decoding as illustrated in
Figure 1. There are a total of 5 hidden layers. The first
dense layer condenses each individual subject-wise 500 di-
mensional fMRI-CNN representation to a lower-dimension
of 100. The second layer simply concatenates all subjects
100-dimensional features in a merged representation. The
third layer is a voting fusion layer with two additional fully-
connected layers (64 and 16 dimensions respectively), and
finally a softmax layer for emotion prediction. Categori-
cal cross-entropy is used as the loss function; other hyper-
parameter settings include activation function of Relu, Adam
as optimizer, learning rate set at 0.0001, epoch for 10 times.

2.3.1. Voting Fusion Layer
We introduce the use of voting fusion layer, f , that fuses mul-
tiple subjects fMRI neural responses in our architecture. It is
defined as below:

Df =Wf ×D2 (1)

where Df is the output of the fusion layer f , Wf refers to the
weight matrix of fusion layer, andD2 is the concatenated fea-
tures from each subject output from the second layer. Note the
absence of activation function and bias function in this partic-
ular layer as compared to the standard neural network in order
to represent the weights as voting operation (i.e., contribution
from the merged feature output layer, D2).

2.3.2. Deep Voting Fusion Network (DVFN)
Our proposed deep voting fusion network (DVFN) is a two-
pass procedure: 1) masking fusion layer weights after learn-
ing the first-pass model, and 2) fine-tuning again the entire
network after applying adjusting fusion layer weights from
step 1. The weight matrix of fusion layer, Wf can be seem as
reflecting the contribution from each individual fMRI-CNN
features. In step 1, we apply a mask on Wf by introducing a
threshold of τ :

f(w) =

{
1, if |w| ≥ τ
0, if |w| < τ

(2)

then the adjusted weight can be acquired by,

Wadjusted =Wf × f(w) (3)

This step effectively emphasizes the node with higher con-
tribution and resets the low-valued weights as noise. Then
in step 2, the entire deep voting fusion network is fine-tuned
again using back-propagation by replacing the original Wf

with Wadjusted.

3. EXPERIMENTAL SETUP AND RESULTS

We carry out experiments for 4-class automatic emotion de-
coding on the 251 utterances. The evaluation scheme is
carried out using leave-one-utterance-out cross-validation,
where the learning of fMRI-CNN and deep voting fusion
network are all contained within the training set. The per-
formance measure is unweighted average recall (UAR). We
compare our framework with the following methods:

• AVB Average: perform emotion classification directly
using multi-class SVM on fMRI-CNN derived from the
average of raw imaging data of all subjects

• INB Individual: perform emotion classification di-
rectly using multi-class SVM on fMRI-CNN derived
from subjects individual raw imaging data

• INB SVM-Voting: perform emotion classification by
learning a decision-level fusion with a second stage
SVM trained on the decision functions outputted from
each individual subjects multi-class SVM [10]

• INB DNN-Fusion: perform emotion classification us-
ing our voting fusion network without adjustment in the
fusion layer weight

• INB DNN-SVM-Voting: perform emotion classifica-
tion by using SVM-voting (two-stage late-decision fu-
sion technique mentioned above) operating on the pre-
diction output of the voting fusion network with adjust-
ment in the fusion layer weight

• INB DVFN DNN-Fusion: our proposed deep voting
fusion network architecture (section 2.3)

3.1. Emotion Classification Results

Table 2 summarizes all the results in our experiments. Our
proposed deep voting fusion network (DVFN) obtains the best
accuracies among all methods compared. It achieves 53.1%
in 4-class UAR, which is 8.9% relative improvement over
previously-published work, i.e., the method of INB SVM-
Voting, on the same task [10]. There are several points to
make from our results. By simply treating individual subject
separately (INB vs. AVB), there is already an improvement
in the accuracy - a result reinforcing the trend in stressing the
importance of individual-level modeling of neural responses.

The voting neural network strategy, i.e., the voting fusion
layer (section 2.3.1), which learns to vote jointly as part of
the neural network architecture is beneficial in improving
emotion classification. In specifics, the method that uses
voting fusing layer outperforms the conventional two-staged
SVM-Voting based decision-level fusion technique. Lastly,
by re-training the network after applying adjusted voting
weight matrix improves 6.9% relative (DVFN DNN-Voting
vs. DNN-Fusion) compared to the one without. The use of ad-
justed weight matrix ensures the network to concentrate more
heavily on relevant subjects and their contributed features to
improve the overall automatic emotion decoding accuracy.
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Table 2. It presents the 4-class emotion classification results of our proposed deep voting fusion neural network and other
fusion techniques. The accuracy is measured in UAR (%).

4-Class AVB: Average INB: Individual INB
SVM-Voting

INB
DNN-Fusion

INB
DNN-SVM-Fusion

INB
DVFN DNN-Voting

Class 1 15.15 12.24 15.15 15.15 15.15 24.24
Class 2 72.15 77.43 84.81 89.87 87.34 87.34
Class 3 44.93 46.41 55.07 55.07 57.97 56.52
Class 4 37.14 40.87 40.00 38.57 47.14 44.29
UAR 42.34 44.31 48.75 49.67 51.90 53.10

Fig. 2. The 4-class motion classification performance mea-
sured in UAR (%) as a function of threshold (τ ) value

3.1.1. Threshold Analysis
In the work, we additionally present different accuracies ob-
tained on our proposed deep voting fusion network by altering
thresholds, τ , values ranging from 0.001 to 0.01 (see Figure
2). By setting the threshold to be 0.002, the best accuracy can
be obtained in the 4-class emotion classification experiment.
In general, we observe that setting the threshold to be a lower
value (e.g., ≤ 0.003) seems to result in high accuracies com-
pared to otherwise. Forcing more weights to be zero at the
fusion layer, in this case, provides a more robust modeling of
multi-perceivers neural responses.

4. CONCLUSION AND FUTURE WORK

The individual difference existed in the humans neural re-
sponses not only poses challenge in the study of emotional
perception and other higher-cognitive functioning of human
brains, but also requires continuous advancements in the mod-
eling technique to handle such a complexity. In this work, we
propose a novel technical framework of deep voting fusion
network to integrate multiple subjects neural responses in task
of automatic vocal emotion decoding. By introducing the use
of voting layer with adjusted weight matrix, we demonstrate
that it obtains a significant improvement over conventional
approach of two-stage late fusion technique. Furthermore,
our analysis reveals that by forcing more weights to be zero at
the fusion layer is likely to increase the accuracy in modeling
human brains fMRI neural responses .

There are multiple future directions. One of the immedi-
ate directions is to incorporate a sparsity constraint on weight
matrix at the fusion layer such that the optimal weights of the
proposed deep voting fusion architecture can be optimized
jointly. Secondly, the use of time-series model, such as re-
current neural network (RNN) and long-short term memory
neural network (LSTM), in modeling EEG and other simi-
lar brain signals have been shown to be useful in tasks of
automatic emotion decoding [18, 19]. While fMRI images
are scanned with coarser temporal resolution, we plan to in-
corporate the temporal aspect of fMRI brain responses into
our modeling. Lastly, one of the future goals is to inves-
tigate in details about the effect of individual difference on
the underlying vocal emotion perception as a function of per-
ceiver’s background, which will hopefully bring further quan-
titative insights in understanding the source of variabilities in
the measured fMRI signals.
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